That (s, $g_{\mu v}$ is an invanant tensor
In general, objects that satisfy $S^{\prime}=S$ are called Lorentz scalars.
example: $g_{\mu v} x^{\mu} x^{v}=x^{2}=c^{2} t^{2}-|\vec{x}|^{2}$.
Note:
$w^{V}=v_{\mu} A^{\mu \nu}$ transforms as a contravaniant four-vector.
[Aside: In three dimensicial Euclidean space, the metric tensor is $\delta_{i j}$. Transformation laws are

$$
A_{i j}=R_{i k} R_{j l} A_{k l}
$$

where $R^{T} R=I$. One difference is that there is no disfinction befween covariant and contravaraint indices.]

Levi-Civita tensor

$$
\begin{aligned}
& \varepsilon^{\mu v \alpha \beta}=\left\{\begin{array}{cl}
+1 & , \text { \{uva } \beta\} \text { is an even permutation } \\
-1 & , \text { odd permutation of }\{0123) \\
0, & \text { otherwise }
\end{array}\right. \\
& \varepsilon^{0123}=+1 \\
& \left(\varepsilon_{0123}=-1\right) \\
& \text { e.g. } \varepsilon^{0132}=-1 \text {. }
\end{aligned}
$$

Under proper Lorentz transformations,

$$
\begin{array}{rlr}
\varepsilon^{1 \mu v \alpha \beta} & =\Lambda_{\rho}^{\mu} \Lambda_{\sigma}^{v} \Lambda_{\tau}^{\alpha} \Lambda_{k}^{\beta} \varepsilon^{\rho \sigma \tau K} \\
& =\varepsilon^{\mu v \alpha \beta}(\operatorname{det} \Lambda) & \text { definition of determinant } \\
& =\varepsilon^{\mu v \alpha \beta} \quad & \operatorname{det} \Lambda=+1 \\
& & \text { for proper Lorentz } \\
& \text { transformations }
\end{array}
$$

$\varepsilon^{\mu \alpha \alpha \beta}$ is a pseudo-invariant tensor.
I can construct a pseudo-scalan

$$
\varepsilon^{\mu \nu \alpha \beta} a_{\mu} b_{\nu} c_{\alpha} d \beta
$$

$\left[\right.$ Beware: Some books define $\left.\varepsilon_{0123}=+1\right]$
The list of all possible invariant tensors (under proper Lorentz transformations) are

$$
g_{\mu v}, g^{\mu v}, \varepsilon^{\mu v \alpha \beta}, \varepsilon_{\mu v \alpha \beta}
$$

and products there of.
$g_{n v} g_{\alpha \beta}$ an invariant th rank tensor.

Identities involving $\varepsilon^{\mu \alpha \alpha \beta}$

$$
\begin{aligned}
& \varepsilon^{\mu \nu \alpha \beta} \varepsilon_{\mu \nu \alpha \beta}=-24 \\
& \varepsilon^{\mu \nu \alpha \beta} \varepsilon_{\mu \nu \alpha \sigma}=-6 \delta_{\sigma}^{\beta} \\
& \varepsilon^{\mu \nu \alpha \beta} \varepsilon_{\mu \nu \rho \sigma}=-2\left(\delta_{\rho}^{\alpha} \delta_{\sigma}^{\beta}-\delta_{\sigma}^{\alpha} \delta_{\rho}^{\beta}\right) \\
& \varepsilon^{\mu \nu \alpha \beta} \varepsilon_{\mu \rho \sigma t}=-\operatorname{det}\left(\begin{array}{ccc}
\delta_{\rho}^{\nu} & \delta_{\sigma}^{\nu} & \delta_{\tau}^{\nu} \\
\delta_{\rho}^{\alpha} & \delta_{\sigma}^{\alpha} & \delta_{\tau}^{\alpha} \\
\delta_{\rho}^{\beta} & \delta_{\sigma}^{\beta} & \delta_{\tau}^{\beta}
\end{array}\right) \\
& \varepsilon^{\mu \nu \alpha \beta} \varepsilon_{\gamma \rho \sigma \tau}=-\operatorname{det}\left(\begin{array}{c}
4 \times 4
\end{array}\right)
\end{aligned}
$$

exercise: write out the 4×4 matrix above.

Examples of four-vectors

1. Velocity four-vector

$$
u^{\mu}=\frac{d x^{\mu}}{d t}=\left(\gamma_{c} ; \gamma \vec{r}\right) \quad \vec{v}=\frac{d \vec{x}}{d t}
$$

$\tau=$ propentime $d t^{2}=g_{\mu \nu} d x^{\mu} d x^{v} \quad$ (Lorentz scalar)

$$
\begin{aligned}
& d \tau=\gamma^{-1} d t \quad \gamma \equiv \frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& \begin{aligned}
u^{2} & \equiv g_{\mu v} u^{\mu} u^{\nu} \\
& =\gamma^{2}\left(c^{2}-|\vec{v}|^{2}\right)=c^{2} \gamma^{2}\left(1-\frac{v^{2}}{c^{2}}\right) \\
& =c^{2}
\end{aligned}
\end{aligned}
$$

Under Lorentz transformations,

$$
u^{\prime \mu}=\Lambda_{v}^{\mu} u^{\nu}
$$

Suppose in an inertial reference frame K, the velocity four-vector is u^{μ}.
The reference frame K^{\prime} is moving at velocity \vec{w} with respect to K.
What is $u^{\prime \mu}$? Use Λ_{v}^{μ} boost matrix, with boost parameter $\vec{\beta}_{w}=\frac{\vec{\omega}}{c}$

$$
\begin{array}{ll}
u^{\mu}=\left(\gamma_{c} ; \gamma \vec{v}\right), & \gamma=\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2} \\
u^{\prime \mu}=\left(\gamma_{c}^{\prime} ; \gamma^{\prime} \vec{v}^{\prime}\right), \quad \gamma^{\prime}=\left(1-\frac{v^{\prime}}{c^{2}}\right)^{-1 / 2}
\end{array}
$$

Relation between \vec{v} and \vec{v}^{\prime}

$$
\vec{v}^{\prime}=\frac{1}{1-\frac{\vec{v} \cdot \vec{w}}{c^{2}}}\left[\frac{1}{\gamma_{w}}\left(\vec{v}-\frac{\vec{v} \cdot \vec{w}}{|\vec{w}|^{2}} \vec{w}\right)-\left(1-\frac{\vec{r} \cdot \vec{w}}{|\vec{w}|^{2}}\right) \vec{w}\right]
$$

$$
\gamma_{w}=\frac{1}{\sqrt{1-\beta_{w}^{2}}} \quad \beta_{w} \equiv \frac{\vec{w}}{c}
$$

Law of addition of velocities
Special case: $\vec{v} \| \vec{w}$

$$
\vec{v}=k \vec{w}
$$

$$
\vec{v}=\left(\frac{\vec{v} \cdot \vec{w}}{|\vec{v}|^{2}}\right) \vec{w}
$$

$$
\Longrightarrow \quad \vec{v}^{\prime}=\frac{\vec{v}-\vec{w}}{1-\frac{\vec{v} \cdot \vec{w}}{c^{2}}}
$$

In limit of $c \rightarrow \infty, \quad \vec{r}=\vec{v}-\vec{w}$.
2. Momentum four-vector

$$
p^{\mu}=m u^{\mu}=\left(\frac{E}{c} ; \vec{p}\right)
$$

$m=$ mass of the particle (intrinsic property of the particle)
$\uparrow_{\text {Lorentz scalar }}$

$$
\begin{aligned}
& \vec{p}=\gamma m \vec{v} \\
& E=\gamma m c^{2}
\end{aligned}
$$

$$
\begin{gathered}
\vec{V}=\frac{\vec{p} c^{2}}{E} \quad \begin{array}{c}
\text { after dividing the two } \\
\text { equations above. }
\end{array} \\
p^{2}=g_{\mu v} p^{\mu} p^{v}=\left(p^{0}\right)^{2}-|\vec{p}|^{2}=m^{2} c^{2} \\
p^{0}=\frac{E}{c} \Rightarrow E^{2}=c^{2}|\vec{p}|^{2}+m^{2} c^{4}
\end{gathered}
$$

non-relativistic limit $|\vec{p}| \rightarrow 0$

$$
E \simeq m c^{2}+\frac{|\vec{p}|^{2}}{2 m}
$$

rest energy

1 non-relatiristic kinetic energy

$$
T=\sqrt{c^{2}|\vec{p}|^{2}+m^{2} c^{4}}-m c^{2}
$$

relativistic general zation of the kinetic energy.
3. Force and acceleration four-vectors.

$$
\vec{F}=\frac{d \vec{p}}{d t}
$$

valid in relativity

$$
\begin{aligned}
& \vec{F}=\frac{d \vec{\rho}}{d t}=\frac{d}{d t}(\gamma m \vec{r})=\gamma m \frac{d \vec{r}}{d t}+m \vec{r} \frac{d \gamma}{d t} \\
& \frac{d \gamma}{d t}=\frac{d}{d t}\left(1-\frac{\vec{v} \cdot \vec{r}}{c^{2}}\right)^{-1 / 2}=\frac{\gamma^{3}}{c^{2}} \vec{r} \cdot \frac{d \vec{r}}{d t} \\
& \vec{F}=\gamma m\left[\frac{d \vec{r}}{d t}+\frac{\gamma^{2}}{c^{2}}\left(\vec{r} \cdot \frac{d \vec{r}}{d t}\right) \vec{r}\right]
\end{aligned}
$$

relativistic generalization ob
Newton's 2 NO law.
Two special cases

1. $\vec{v} \| \frac{d \vec{v}}{d t} \quad$ (linear motion)

$$
\begin{aligned}
\frac{d \vec{v}}{d t} & =k \vec{v} \Rightarrow k=\frac{1}{r^{2}} \vec{v} \cdot \frac{d \vec{v}}{d t} \\
& =\frac{\vec{v}}{v^{2}}\left(\vec{v} \cdot \frac{d \vec{v}}{d t}\right)
\end{aligned}
$$

$\Longrightarrow \vec{F}=\gamma^{3} m \frac{d \vec{v}}{d t}$, linear motion
2. $\vec{v} \perp \frac{d \vec{v}}{d t}$ (circular motion) $\Rightarrow \vec{F}=\gamma_{m} \frac{d \vec{v}}{d t}$, circular motion relativistic mass (??)

Should it be defined to be $\gamma \mathrm{m}$, as ia circular motion?
Should it be defined to be $\gamma^{3} m$, as in linear motion?
What about in other cases, where \vec{F} is not even proportional to $\frac{d \vec{v}}{d t}$?
Conclusion: "relativistic mass" is not a useful concept. It is best to regard "mass" as an intrinsic property of a particle, ie. a Lorentz scalar quantity that does not depend on the reference frame.
See L.B.Okun, Physics Today 42, 31-36(1989).
3. Force and acceleration 4-vectors

Last time we saw that the relativistic generalization of Newton's second law was

$$
\vec{F}=\gamma_{m}\left[\frac{d \vec{r}}{d t}+\frac{\gamma^{2}}{c^{2}}\left(\vec{r} \cdot \frac{d \vec{r}}{d t}\right) \vec{v}\right]
$$

where $\vec{v} \equiv \frac{d \vec{x}}{d t}$. Introducing $\vec{a} \equiv \frac{d \vec{v}}{d t}$, we can rewrite the above equation as

$$
\begin{aligned}
\vec{F} & =\gamma m\left[\vec{a}+\frac{\gamma^{2}}{c^{2}}(\vec{v} \cdot \vec{a}) \vec{r}\right] \\
\vec{F} \cdot \vec{v} & =\gamma m \vec{v} \cdot \vec{a}\left(1+\frac{\gamma^{2} r^{2}}{c^{2}}\right)=\gamma^{3} m \vec{v} \cdot \vec{a}
\end{aligned}
$$

since $\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}$

$$
\begin{gathered}
\frac{d E}{d t}=\frac{d}{d t}\left(\gamma m c^{2}\right)=m c^{2} \frac{d \gamma}{d t}=\gamma^{3} m \vec{v} \cdot \vec{a} \\
\frac{d E}{d t}=\vec{F} \cdot \vec{r} \quad \text { (power) }
\end{gathered}
$$

Force 4-vector (Minkowski force)

$$
K^{\mu}=\frac{d \rho^{\mu}}{d \tau}=\left(\frac{\gamma \vec{F} \cdot \vec{r}}{c} ; \gamma \vec{F}\right) \quad \vec{K}=\gamma \vec{F}
$$

Accelenation 4-vector

$$
\begin{aligned}
& \alpha^{\mu}=\frac{d u^{\mu}}{d \tau}=(\frac{\gamma^{4}}{c} \vec{r} \cdot \vec{a} ; \underbrace{\left.\gamma^{2} \vec{a}+\frac{\gamma^{4}}{c^{2}}(\vec{v} \cdot \vec{a}) \vec{r}\right)}_{\vec{\alpha}} \\
& \text { ce } p^{\mu}=m u^{\mu}
\end{aligned}
$$

Since $p^{\mu}=m u^{\mu}$

$$
k^{\mu}=m \alpha^{\mu}
$$

Properties of α^{μ}
(i) $\alpha^{\mu} u_{\mu}=0$
note:

$$
\begin{aligned}
A^{\mu} B_{\mu} & =A_{\mu} B^{\mu} \\
& =g_{\mu \nu} A^{\mu} B^{\mu}
\end{aligned}
$$

Proof: Recall $u^{\mu} u_{\mu}=c^{2}$

$$
0=\frac{d}{d \bar{c}}\left(u^{\mu} u_{\mu}\right)=2 u^{\mu} \frac{d u_{\mu}}{d \tau}=2 u^{\mu} \alpha_{\mu}
$$

Sire u^{μ} is timalike

$$
\left(u^{\mu} u_{\mu}>0\right)
$$

$$
\left(\alpha^{\mu} \alpha_{\mu}<0\right)
$$

$$
\begin{aligned}
\alpha^{\mu} \alpha \mu & =-\gamma^{4}\left[|\vec{a}|^{2}+\frac{\gamma^{2}}{c^{\theta}}(\vec{r}-\vec{a})^{2}\right] \\
& =-\gamma^{6}\left[|\vec{a}|^{\theta}-\frac{|\vec{r} \times \vec{a}|^{2}}{c^{2}}\right] \\
& =-\gamma^{6}|\vec{a}|^{2}\left(1-\frac{r^{2}}{c^{2}} \sin ^{2} \theta\right)<0
\end{aligned}
$$

since $|v|<c$
$\theta=$ angle between \vec{r} and \vec{a}

$$
g \equiv \sqrt{-\alpha_{\mu} \alpha^{\mu}}
$$

Constant acceleration in relativity is not constant \vec{a}
Instead it is constant g.
Example: constant linear acceleration $\vec{a} \| \vec{v}$

$$
\begin{aligned}
& g=\gamma^{3}|\vec{a}| \\
& \frac{d r}{d t}=|\vec{a}|=\gamma-3 g=\left(1-\frac{r^{2}}{c^{2}}\right)^{3 / 2} g \\
& v(t)=\frac{g t}{\left(1+\frac{g^{2} t^{2}}{c^{2}}\right)^{1 / 2}} \\
& \lim _{t \rightarrow \infty} r(t)=c
\end{aligned}
$$

The trajectory of the particle $\quad(\vec{v}=v \hat{x})$

$$
\begin{aligned}
& c t=\frac{c^{2}}{g} \sinh \left(\frac{g \tau}{c}\right), \quad x=\frac{c^{2}}{g} \cosh \left(\frac{g \tau}{c}\right) \\
& \Rightarrow x^{2}-c^{2} t^{2}=\frac{c^{4}}{g} \quad \begin{array}{c}
\text { (hyperbola in } \\
\text { space tine) }
\end{array}
\end{aligned}
$$

This is called hyperbolic motion.

